3.125 \(\int \frac{x^4 (a+b \cosh ^{-1}(c x))}{(d-c^2 d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=224 \[ -\frac{x \left (a+b \cosh ^{-1}(c x)\right )}{c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{\sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{2 b \sqrt{c x-1} \sqrt{c x+1} \log \left (1-c^2 x^2\right )}{3 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{c x-1} \sqrt{c x+1}}{6 c^5 d \left (d-c^2 d x^2\right )^{3/2}} \]

[Out]

(b*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(6*c^5*d*(d - c^2*d*x^2)^(3/2)) + (x^3*(a + b*ArcCosh[c*x]))/(3*c^2*d*(d - c^
2*d*x^2)^(3/2)) - (x*(a + b*ArcCosh[c*x]))/(c^4*d^2*Sqrt[d - c^2*d*x^2]) + (Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a +
b*ArcCosh[c*x])^2)/(2*b*c^5*d^2*Sqrt[d - c^2*d*x^2]) + (2*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Log[1 - c^2*x^2])/(3*
c^5*d^2*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.757194, antiderivative size = 251, normalized size of antiderivative = 1.12, number of steps used = 8, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {5798, 5752, 5676, 260, 266, 43} \[ \frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d^2 (1-c x) (c x+1) \sqrt{d-c^2 d x^2}}-\frac{x \left (a+b \cosh ^{-1}(c x)\right )}{c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{\sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{c x-1} \sqrt{c x+1}}{6 c^5 d^2 \left (1-c^2 x^2\right ) \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{c x-1} \sqrt{c x+1} \log \left (1-c^2 x^2\right )}{3 c^5 d^2 \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^4*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

(b*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(6*c^5*d^2*(1 - c^2*x^2)*Sqrt[d - c^2*d*x^2]) - (x*(a + b*ArcCosh[c*x]))/(c^4
*d^2*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcCosh[c*x]))/(3*c^2*d^2*(1 - c*x)*(1 + c*x)*Sqrt[d - c^2*d*x^2]) + (
Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(2*b*c^5*d^2*Sqrt[d - c^2*d*x^2]) + (2*b*Sqrt[-1 + c*x]*S
qrt[1 + c*x]*Log[1 - c^2*x^2])/(3*c^5*d^2*Sqrt[d - c^2*d*x^2])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5752

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*(f*x)^(m - 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2
*e1*e2*(p + 1)), x] + (-Dist[(f^2*(m - 1))/(2*e1*e2*(p + 1)), Int[(f*x)^(m - 2)*(d1 + e1*x)^(p + 1)*(d2 + e2*x
)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Dist[(b*f*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*
x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^(m - 1)*(-1 + c^2*x^2)^(
p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0]
&& EqQ[e2 + c*d2, 0] && GtQ[n, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[p + 1/2]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x^4 \left (a+b \cosh ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^4 \left (a+b \cosh ^{-1}(c x)\right )}{(-1+c x)^{5/2} (1+c x)^{5/2}} \, dx}{d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d^2 (1-c x) (1+c x) \sqrt{d-c^2 d x^2}}+\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^2 \left (a+b \cosh ^{-1}(c x)\right )}{(-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{c^2 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^3}{\left (-1+c^2 x^2\right )^2} \, dx}{3 c d^2 \sqrt{d-c^2 d x^2}}\\ &=-\frac{x \left (a+b \cosh ^{-1}(c x)\right )}{c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d^2 (1-c x) (1+c x) \sqrt{d-c^2 d x^2}}+\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{a+b \cosh ^{-1}(c x)}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x}{-1+c^2 x^2} \, dx}{c^3 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \frac{x}{\left (-1+c^2 x\right )^2} \, dx,x,x^2\right )}{6 c d^2 \sqrt{d-c^2 d x^2}}\\ &=-\frac{x \left (a+b \cosh ^{-1}(c x)\right )}{c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d^2 (1-c x) (1+c x) \sqrt{d-c^2 d x^2}}+\frac{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{b \sqrt{-1+c x} \sqrt{1+c x} \log \left (1-c^2 x^2\right )}{2 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \left (\frac{1}{c^2 \left (-1+c^2 x\right )^2}+\frac{1}{c^2 \left (-1+c^2 x\right )}\right ) \, dx,x,x^2\right )}{6 c d^2 \sqrt{d-c^2 d x^2}}\\ &=\frac{b \sqrt{-1+c x} \sqrt{1+c x}}{6 c^5 d^2 \left (1-c^2 x^2\right ) \sqrt{d-c^2 d x^2}}-\frac{x \left (a+b \cosh ^{-1}(c x)\right )}{c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^3 \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d^2 (1-c x) (1+c x) \sqrt{d-c^2 d x^2}}+\frac{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{2 b \sqrt{-1+c x} \sqrt{1+c x} \log \left (1-c^2 x^2\right )}{3 c^5 d^2 \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.709556, size = 225, normalized size = 1. \[ \frac{\frac{2 a c x \left (4 c^2 x^2-3\right ) \sqrt{d-c^2 d x^2}}{\left (c^2 x^2-1\right )^2}-6 a \sqrt{d} \tan ^{-1}\left (\frac{c x \sqrt{d-c^2 d x^2}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )+\frac{b d \left (-\frac{\sqrt{\frac{c x-1}{c x+1}} (c x+1)+2 c x \cosh ^{-1}(c x)}{c^2 x^2-1}-8 c x \cosh ^{-1}(c x)+\sqrt{\frac{c x-1}{c x+1}} (c x+1) \left (8 \log \left (\sqrt{\frac{c x-1}{c x+1}} (c x+1)\right )+3 \cosh ^{-1}(c x)^2\right )\right )}{\sqrt{d-c^2 d x^2}}}{6 c^5 d^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^4*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

((2*a*c*x*(-3 + 4*c^2*x^2)*Sqrt[d - c^2*d*x^2])/(-1 + c^2*x^2)^2 - 6*a*Sqrt[d]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2]
)/(Sqrt[d]*(-1 + c^2*x^2))] + (b*d*(-8*c*x*ArcCosh[c*x] - (Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x) + 2*c*x*ArcCos
h[c*x])/(-1 + c^2*x^2) + Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(3*ArcCosh[c*x]^2 + 8*Log[Sqrt[(-1 + c*x)/(1 + c
*x)]*(1 + c*x)])))/Sqrt[d - c^2*d*x^2])/(6*c^5*d^3)

________________________________________________________________________________________

Maple [B]  time = 0.308, size = 1519, normalized size = 6.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x)

[Out]

1/3*a*x^3/c^2/d/(-c^2*d*x^2+d)^(3/2)-a/c^4/d^2*x/(-c^2*d*x^2+d)^(1/2)+a/c^4/d^2/(c^2*d)^(1/2)*arctan((c^2*d)^(
1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/2*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^5/(c^2*x^2-1)*arcc
osh(c*x)^2+8/3*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^5/(c^2*x^2-1)*arccosh(c*x)-32*b*(-d*
(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)*c/d^3*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^
(1/2)*x^6+32*b*(-d*(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)*c^2/d^3*arccosh(c*x)*x
^7-8/3*b*(-d*(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/d^3*(c*x-1)*(c*x+1)*x^5+8/3*
b*(-d*(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)*c^2/d^3*x^7+84*b*(-d*(c^2*x^2-1))^(
1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c/d^3*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^4-76*b
*(-d*(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/d^3*arccosh(c*x)*x^5+14/3*b*(-d*(c^2
*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^2/d^3*(c*x-1)*(c*x+1)*x^3+4*b*(-d*(c^2*x^2-
1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c/d^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^4-22/3*b*(-d*(
c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/d^3*x^5-220/3*b*(-d*(c^2*x^2-1))^(1/2)/(24
*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^3/d^3*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^2+181/3*b*(-
d*(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^2/d^3*arccosh(c*x)*x^3-2*b*(-d*(c^2*x
^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^4/d^3*(c*x-1)*(c*x+1)*x-13/2*b*(-d*(c^2*x^2-1
))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^3/d^3*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2+20/3*b*(-d*
(c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^2/d^3*x^3+64/3*b*(-d*(c^2*x^2-1))^(1/2)
/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^5/d^3*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)-16*b*(-d*(
c^2*x^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^4/d^3*arccosh(c*x)*x+8/3*b*(-d*(c^2*x^2-
1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^5/d^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)-2*b*(-d*(c^2*x
^2-1))^(1/2)/(24*c^8*x^8-87*c^6*x^6+118*c^4*x^4-71*c^2*x^2+16)/c^4/d^3*x-4/3*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^
(1/2)*(c*x+1)^(1/2)/d^3/c^5/(c^2*x^2-1)*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (b x^{4} \operatorname{arcosh}\left (c x\right ) + a x^{4}\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{6} d^{3} x^{6} - 3 \, c^{4} d^{3} x^{4} + 3 \, c^{2} d^{3} x^{2} - d^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(-(b*x^4*arccosh(c*x) + a*x^4)*sqrt(-c^2*d*x^2 + d)/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^2*d^3*x^2 - d^3
), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4} \left (a + b \operatorname{acosh}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral(x**4*(a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )} x^{4}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x^4/(-c^2*d*x^2 + d)^(5/2), x)